Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 9(1): 20, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746972

RESUMO

Deficits in protein synthesis are associated with Parkinson's disease (PD). However, it is not known which proteins are affected or if there are synthesis differences between patients with sporadic and Leucine-Rich Repeat Kinase 2 (LRRK2) G2019S PD, the most common monogenic form. Here we used bio-orthogonal non-canonical amino acid tagging for global analysis of newly translated proteins in fibroblasts from sporadic and LRKK2-G2019S patients. Quantitative proteomic analysis revealed that several nascent proteins were reduced in PD samples compared to healthy without any significant change in mRNA levels. Using targeted proteomics, we validated which of these proteins remained dysregulated at the static proteome level and found that regulators of endo-lysosomal sorting, mRNA processing and components of the translation machinery remained low. These proteins included autophagy-related protein 9A (ATG9A) and translational stability regulator YTH N6-ethyladenosine RNA binding protein 3 (YTHDF3). Notably, 77% of the affected proteins in sporadic patients were also repressed in LRRK2-G2019S patients (False discovery rate (FDR) < 0.05) in both sporadic and LRRK2-G2019S samples. This analysis of nascent proteomes from PD patient skin cells reveals that regulators of proteostasis are repressed in both sporadic and LRRK2-G2019S PD.

2.
Viruses ; 12(12)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322225

RESUMO

Acyclovir is the drug of choice for the treatment of herpes simplex virus (HSV) infections. Acyclovir-resistant HSV strains may emerge, especially during long-term drug use, and subsequently cause difficult-to-treat exacerbations. Previously, we set up a novel treatment approach, based on enzymatically synthesized pools of siRNAs, or siRNA swarms. These swarms can cover kilobases-long target sequences, reducing the likelihood of resistance to treatment. Swarms targeting the UL29 essential gene of HSV-1 have demonstrated high efficacy against HSV-1 in vitro and in vivo. Here, we assessed the antiviral potential of a UL29 siRNA swarm against circulating strains of HSV-1, in comparison with acyclovir. All circulating strains were sensitive to both antivirals, with the half-maximal inhibitory concentrations (IC50) in the range of 350-1911 nM for acyclovir and 0.5-3 nM for the UL29 siRNA swarm. Additionally, we showed that an acyclovir-resistant HSV-1, devoid of thymidine kinase, is highly sensitive to UL29 siRNA treatment (IC50 1.0 nM; Imax 97%). Moreover, the detected minor variations in the RNAi target of the HSV strains had no effect on the potency or efficacy of UL29 siRNA swarm treatment. Our findings support the development of siRNA swarms for the treatment of HSV-1 infections, in order to circumvent any potential acyclovir resistance.


Assuntos
Aciclovir/farmacologia , Proteínas de Ligação a DNA/genética , Herpes Simples/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Virais/genética , Aciclovir/uso terapêutico , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Herpes Simples/terapia , Herpesvirus Humano 1/classificação , Herpesvirus Humano 1/isolamento & purificação , Humanos , Concentração Inibidora 50 , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...